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LIQUID CRYSTALS, 1989, VOL. 5 ,  No. 1, 323-326 

The elastic constants of nematics 

by E. GOVERS 
Hogeschool West-Brabant, Sector Laboratoriumonderwijs, Concordialaan 137, 

4874NS Etten-Leur, The Netherlands 

and G. VERTOGEN 
Institute for Theoretical Physics, Catholic University, Toernooiveld, 

6525 ED Nijmegen, The Netherlands 

It is pointed out that some often cited molecular statistical calculations of the 
elastic constants of nematics are based on a postulated instead of a derived 
expression for the distortion free energy density. In particular attention is paid to 
the contradictory results of Priest and Poniewierski and Stecki for hard rod 
systems. The appropriate way to calculate the elastic constants of hard rod models 
from first principles is discussed briefly. 

The purpose of this paper is two-fold. First we discuss briefly a hardly noted 
fundamental problem inherent in the commonly adopted approach of formulating a 
molecular-statistical theory of the Frank elastic constants of nematic liquid crystals. 
Secondly, we give a short presentation of the elements of a theory that was recently 
proposed in order to solve that problem. 

The first approach to derive the\ expressions for the Frank elastic constants in 
terms of the relevant molecular-statistical quantities was given by Priest [l]. He took 
into account the effect of the distortion on both the internal energy, as previously done 
by Nehring and Saupe [2] ,  and the entropy of the system. A famous result of his theory 
is the derivation of the following expressions for the elastic constants of a system 
consisting of hard spherocylinders using the Onsager approximation: 

where K, , K2 and K3 are, respectively, the elastic constants for splay, twist and bend, 
K = +(K, + K2 + K3) ,  ( P 2 )  and (P4) are the expectation values of the second and 
fourth Legendre polynomials, respectively, and the quantities A and A’ depend on the 
ratio R = D / L  of the capped spherocylinders with width D and length D + L, and 
are given by 

27(1 - tR’)  K =  2(1 - R2)  
7 + 20R2’ 16(7 + 20R2)’ 

A =  

A second approach was formulated by Poniewierski and Stecki [3] by considering 
the free energy of the distorted nematic liquid crystal as a functional of the single- 
particle distribution function. These authors also calculated the Frank elastic constants 
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324 E. Govers and G. Vertogen 

of a system consisting of hard spherocylinders in the Onsager approximation and 
obtained different expressions for the quantities A and A’: 

54(& - +Rz) A ’ =  2 - 3RZ 
7(1 4- 3R2)’ 7(1 + 3RZ) ’ 

A =  ( 3 )  

Both approaches have in common that their starting point is a postulated dis- 
tortion free energy density. This means that these approaches are far from a true 
molecular-statistical theory, as the purpose of a molecular-statistical theory must be, 
by definition, the derivation of the distortion free energy density. Therefore, the 
fundamental problem arises concerning the truth of the postulated distortion free 
energy densities. The need for a derivation of the distortion free energy density from 
first principles can be felt even more strongly when one considers the difference 
between the results of Priest and those of Poniewierski and Stecki, assuming that both 
calculations have been carried out correctly. In that case an alarming situation arises, 
as the difference points out that the proposed free energy densities for the distorted 
state are unequal, violating the physical requirement that this quantity must be 
unique. Although Poniewierski and Stecki themselves did note the difference between 
their result and that of Priest, they did not pay any serious attention to this discrep- 
ancy because of found numerical insignificance. Thus, they completely overlooked 
the fundamental problem raised by their result. In order to stress the difference 
between both results, we consider a system of infinitely long spherocylinders, i.e. 
R = 0, in the limit of perfect nematic order, i.e. (Pz) w 1 and (Pa) w 1. Undoubtedly 
the validity of this extrapolation may be questioned because of the violation of the 
assumption underlying the derivation of equations ( 2 )  and ( 3 )  that the order par- 
ameters (P,) decrease with increasing n. However, the validity itself is not the point. 
The meaning of the extrapolation is to show clearly the difference between both 
results, while they must be equal as they deal with the same physical system. According 
to Priest the splay constant is given by K, = &K, whereas the approach of Poniewierski 
and Stecki gives K = - &K. Thus, the result of Priest is still acceptable, although 
probably not correct, whereas the result of Poniewierski and Stecki is physically 
absurd, as it states that the state is unstable. 

Apart from the fundamental problem concerning the justification of the proposed 
distortion free energy density, the commonly adopted approaches [l-41 give rise to a 
problem concerning the understanding of the calculation of the elastic constants of 
hard core systems as pointed out by the following consideration. The elastic constants 
are related to the derivatives of the intermolecular interaction. It is clear that these 
derivatives show a singular behaviour in the case of hard core potentials. The problem 
is now that the approaches mentioned do not give any information on the appearance 
of these singularities or on the way in which they are removed. 

In order to solve these problems a true molecular-statistical theory [5] has been 
proposed. The starting point of this theory is the unperturbed nematic equilibrium 
state of the system. Without loss of generality, the uniaxial axis of this state may 
be taken along the space-fixed z axis. This symmetry breaking can be brought about 
by applying a magnetic field along that direction and then letting the field strength 
go to zero. The next step is to apply a small distortion. This can be done by applying 
an additional but small space-dependent magnetic field. The result is equivalent to 
the application of a position-dependent rotation of the molecules in the original 
non-distorted state. It suffices to apply a small rotation by e(r) about the space-fixed 
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The elastic constants of nematics 325 

y axis because of the uniaxiality of the nematic state. The elements of the second- 
rank orientational tensor QP, describing the orientation of a molecule in the distorted 
state, are now related to those of the original orientational tensor Q in the following 
way 

(4) 

where the Greek indices denote x ,  y and z ,  summation over repeated Greek indices 
is implied and the transformation matrix R(8) is given by 

Q$ = R, (6) R, (6) Qya, 

cos8 0 sin8 

R(e) = ( o 1 o 1. 
-sin8 0 cos8 

Denoting the interaction energy between two molecules 1 and 2 in an unperturbed 
state by V,, = V(rlz, Q1 , Q,), with rI2  the intermolecular distance vector, the energy 
change of this state due to the distortion is 

Aiz = V(r129 Q Y ,  QT)  - J'(riz, Q i ,  Qz). (6 )  
In order to find the expressions for the elastic constants this expression must be 
expanded as a Taylor series and only terms of the order 8,8, 8,8,8 and a,88,8 are 
kept. The microscopic analogue of the Frank distortion free energy density is then 
obtained by applying thermodynamic perturbation theory using the distortion 8(r) as 
a measure for the magnitude of the perturbation. 

The Frank elastic constants are determined by the difference between the free 
energies of the distorted and unperturbed state. It suffices to approximate that energy 
difference A f by 

where ( A )  denotes the average of the quantity A with respect to the unperturbed 
ensemble. Clearly Frank's elasticity theory goes beyond linear response theory, i.e. the 
term linear in A.  The non-linear contribution is sometimes neglected (see, for example 
[6]).  However, this is certainly not justified for a number of models. 

In order to calculate the elastic constants of hard core systems, the hard core 
interaction must be conceived as the limit of a smoothly behaving interaction in view 
of the discontinuous character of the hard core potential. An example of such a 
smooth potential is 

V(r12, QI ,  Q2) = A 

where rI2 = I r,, I u , ~  and the function Ol2 = D(uI2, Q, , Q2) is the closest distance of 
approach of molecules 1 and 2. This potential leads to a discontinuity in the limit 
E + 0, where the interaction behaves as a step function with height A .  The hard 
core model is obtained by taking first the limit E -+ 0 and then the limit A -, a, 
Only in this way can the appearing singularities and their consequences be analysed 
properly. It appears that the contribution to the elastic constants due to linear 
response theory diverges in the hard core limit. Finite values for the elastic constants 
are obtained as this divergence is cancelled by a similar term of the non-linear 
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326 E. Govers and G. Vertogen 

contribution to the distortion free energy. Thus, the non-linear contribution plays a 
crucial part in the calculation of the elastic constants of hard core systems. The results 
for the Onsager hard rod model can be obtained by finding the appropriate form of 
&. This seems, however, of little physical interest in view of the fact that (a) the 
elastic constants of that model increase with temperature, whereas they decrease 
experimentally, and (b) the validity of the Onsager approach gets lost in the ordered 
state [7]. 
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